A Regression Spline Model for Developmental Toxicity Data
نویسندگان
چکیده
منابع مشابه
A regression spline model for developmental toxicity data.
Observed dose-response patterns of data from several developmental toxicity experiments appear to be nonlinear and should be characterized by an appropriate model to adequately fit this observed pattern. Information from these animal studies of ambient substances that are noncarcinogenic, yet potentially toxic, to humans is used by federal protection agencies (Environmental Protection Agency, O...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملSpatial Correlation Testing for Errors in Panel Data Regression Model
To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملMultiple Fuzzy Regression Model for Fuzzy Input-Output Data
A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Toxicological Sciences
سال: 2006
ISSN: 1096-6080,1096-0929
DOI: 10.1093/toxsci/kfj202